Stacks of Hyperbolic Spaces and Ends of 3-manifolds

نویسنده

  • B. H. BOWDITCH
چکیده

In this paper we introduce the notion of a “stack” of geodesic spaces. Loosely speaking, this consists of a geodesic space decomposed into a sequence of “sheets” indexed by a set of consecutive integers. A stack is said to be “hyperbolic” if it is Gromov hyperbolic and its sheets are uniformly Gromov hyperbolic. We define a Cannon-Thurston map for such a stack, and show that the boundary of a one-sided proper hyperbolic stack is a dendrite. If the stack arises from a sequence of closed hyperbolic surfaces with a lower bound on injectivity radius, then this allows us to define an “ending lamination” on the surface. We show that the ending lamination has a certain dynamical property that implies unique ergodicity. We also show that such a sequence is a bounded distance from a Teichmüller ray — a result obtained independently by Mosher. This can be reinterpreted in terms of the Bestvina-Feighn flaring condition, and gives a coarse geometrical characterisation of Teichmüller rays. Applying this to a simply degenerate end of a hyperbolic 3-manifold with bounded geometry, we recover Thurston’s ending lamination conjecture, proven by Minsky, in this case. Various related issues are discussed. 2010 Mathematics Subject Classification: 57M50, 20F65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Cone-manifolds, Short Geodesics, and Schwarzian Derivatives

With his hyperbolic Dehn surgery theorem and later the orbifold theorem, Thurston demonstrated the power of using hyperbolic cone-manifolds to understand complete, non-singular hyperbolic 3-manifolds. Hodgson and Kerckhoff introduced analytic techniques to the study of cone-manifolds that they have used to prove deep results about finite volume hyperbolic 3-manifolds. In this paper we use Hodgs...

متن کامل

Resonance asymptotics for asymptotically hyperbolic manifolds with warped-product ends

Resonance asymptotics for asymptotically hyperbolic manifolds with warped-product ends By Pascal Philipp We study the spectral theory of asymptotically hyperbolic manifolds with ends of warped-product type. Our main result is an upper bound on the resonance counting function, with a geometric constant expressed in terms of the respective Weyl constants for the core of the manifold and the base ...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

Minimal Surfaces in Finite Volume Hyperbolic 3-manifolds N and in M × S, M a Finite Area Hyperbolic Surface

We consider properly immersed finite topology minimal surfaces Σ in complete finite volume hyperbolic 3-manifolds N , and in M × S, where M is a complete hyperbolic surface of finite area. We prove Σ has finite total curvature equal to 2π times the Euler characteristic χ(Σ) of Σ, and we describe the geometry of the ends of Σ. .

متن کامل

Intersections in hyperbolic manifolds

We obtain some restrictions on the topology of infinite volume hyperbolic manifolds. In particular, for any n and any closed negatively curved manifold M of dimension ≥ 3, only finitely many hyperbolic n–manifolds are total spaces of orientable vector bundles over M . AMS Classification numbers Primary: 30F40, 53C23, 57R20 Secondary: 22E40, 32H20, 51M10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002